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The velocity and the diffusion constant are obtained for a periodic one- 
dimensional hopping model of arbitrary period N. These two quantities are 
expressed as explicit functions of all the hopping rates. The velocity and the 
diffusion constant of random systems are calculated by taking the limit N ~ oe. 
One finds by varying the distribution of hopping rates that the diffusion 
constant and the velocity are singular at different points. Lastly, several possible 
applications are proposed. 
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1. INTRODUCTION 

A lot of attention (1) has been given recently to the problem of diffusion on 
a one-dimensional lattice with random hopping rates. This model gives a 
satisfactory understanding of conductivity experiments on some anisotropic 
organic conductors. (2) From a theoretical point of view, it seems to be one 
of the simplest models of disordered systems. Up to now, physicists have 
mainly studied the diffusion on a random chain when the transition rates 
are symmetric. They have developed several methods like the effective 
medium approximation (3-6) or renormalization group calculations (7) to 
calculate the diffusion coefficient or the low-frequency dependence of the 
conductivity and now the problem is well understood. (8) 

The case of asymmetric hopping rates has motivated a lot of work in 
probability theory. (9'1~ In particular it was shown that for some distribu- 
tions, the mean displacement may grow indefinitely, but slower than 
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linearly in time. The model usually studied is a discrete time model. If a 
particle is on site n at time t, it will be at time t + 1 either on site n + 1 with 
probability Pn or on site n -  1 with probability q, = 1 -  p, .  Recently, 
Sinai ~10 has shown that, for random hopping rates Pn which satisfy 

(log Pn) = (logqn) (1) 

the particle is after time t at a distance of order log2t from its starting point. 
(The averages ( > are performed according to a given distribution of p,.)  
When the hopping rates do not satisfy the condition (1), one finds (9'1~ 
that the mean position x(t) of the particle increases linearly in time, i.e., 
with a finite velocity only if 

(q./Pn) < 1 

One finds 

whereas 

or (Pn/qn> < 1 (2) 

<>(< x(O • l -  qn 
P, P, 

!>-1(1_< 
) t  if (q--~)<lp.  (3) 

) t  if (P---~)<lq. (4) 

On the contrary, if the condition (2) is not satisfied, the mean position x(t) 
increases like a power law t ~ with/3 < 1. Then ~9'1~ if a is the nonzero 

solution of 

( 1 --Pn l a ;  ~---- 1 (5) 
P , ] /  

One finds 

x ( t ) ~ t  ~ if c t > 0  
(6) 

~ - t  -~ if a < 0  

Bernasconi and Schneider ~3) found that these power laws (6) are modu- 
lated by a periodic function of log t for some particular distributions of Pn. 

The purpose of this paper is to give an exact expression for the velocity 
and the diffusion constant of a periodic one-dimensional hopping problem 
with an arbitrary period N. The method followed is an extension of the 
approach used in previous work done with Y. Pomeau. ~L2) It consists in 
calculating exactly the properties of the steady state. From the exact 
expressions of the velocity and of the diffusion constant of a periodic chain, 
one can obtain these quantities for random systems by taking the limit of 
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an infinite period. One finds the conditions under which the velocity and 
the diffusion constant are both finite. By varying the distribution of 
hopping rates, one observes that the diffusion constant diverges at a point 
which differs from the point where the velocity vanishes. The fact that two 
different quantities are singular at different points is a common feature to 
several disordered systems. (14) Lastly some possible applications of the 
results presented here will be proposed. 

2. THE STEADY STATE 

We shall consider here the continuous time problem. The results will 
be generalized in Section 5 to the discrete time case. We start with the 
Master equation which gives the time evolution of P,(t), the probability for 
the particle to be on site n at time t: 

ae. 
dt - W"'+IP'+I + W ' " - I P ' - '  - (W'+l'" + W'-I '")P" (7) 

W~d denotes the probability of jumping from site j to site i per unit time. 
We do not assume any symmetry of the W/,j (i.e., Wig has no reason to be 
equal to Wj, i). 

We consider here a periodic model of period N 

W i j  = Wi+N, j+  N (8)  

Let us introduce two quantities/~,(t) and ,~,(t) which have simple behav- 
iors in the long time limit: 

oo 
/ ~ . ( t ) -  ~,, P,+Nk(t) (9) 

S.( t )  = ~] (n + Nk)P .+ ik  (10) 
k= -oo  

In this section, we are going to calculate the long time behaviors of the 
R,(t)  and the Sn(t). R,(t)  represents the probability that the particle is on 
one of the sites n + Nk  (k E 7/) at time t. The ratio S,( t ) / l~ , ( t )  represents 
the average position of the particle when the average is restricted to the 
sites n + Nk  (k ~ 7/). From the definitions (9) and (10) one sees immedi- 
ately that 

l~.(t) = R.+N(t)  (11) 

Sn(t) = ff.+N(t) (12) 

From Eqs. (7)-(10), one can obtain the time evolution o f / ~ ( t )  and 
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go(t): 

- Won+lRn+,-- + Wnn IR.-- , - ( W . + , . n  + Wn 
t ' ' - -  - -  - 

d S n  _ _  Wnn+l~+ ~ Wnn_,~_l-  (Wn+l, n -J- V~n_l,n) ~ dt ' 1 , 

(13) 

- Wn,.+l/~n+ l + Wn, . ,/~,_, (14) 

In the long time limit, one expects to reach a steady state and that the/~n(t) 
and Sn(t)  have a simple behavior: 

{&(0  Rn (15) 
for t--~oo Sn( t ) - -~an t  + T ,  (16) 

where the R,, an, and T n do not depend on time. 
[ did not find a simple proof that the long time behaviors of/~n(t) and 

Sn(t) are actually given by (15) and (16). However, these behaviors seem 
reasonable if we exclude the case where some W/j vanish. One can at least 
justify (15) and (16) by considering the hopping problem on a circle of N 
sites. For this hopping problem on a circle, there exists a dynamical steady 
state with the particle turning with a constant velocity. R n is the probability 
that the particle is on site n in the steady state, whereas Sn( t  ) is related to 
the average number of turns done by a particle located on site n at time t. 

By replacing in (13) and (14) the R . ( t )  and the 5~n(t ) by their long time 
behaviors (15) and (16), one finds that the Rn, a n, and T n must satisfy the 
following three equations: 

0 = W. ,n+lRn+l  + W . , . _ , R . _ , -  ( W n + L .  + W . _ , . ) R .  (17) 

0 = Wn,.+,an+ , + W . . . _ , a . _ ,  - ( W . + , ,  n + W . _ l . n ) a  , (18) 

a n = Wn,n+lT.+l  + Wn,n_lTn_ 1 - (Wn+, ,  n + W n _ l , n ) T  n 

- W. ,n+lR .+  1 + Wn .n_ ,Rn_ ,  (19) 

whereas the conditions (11) and (12) become 

Rn -~ -Rn + N (20) 

a n = an+ N (21) 

T.  = Tn+ u (22) 

The solution of recurrence (17) contains a priori two arbitrary con- 
stants. However, the constraint (20) fixes one of these constants and one 
finds the general solution of (17) and (20) is 

R. = C,r.  (23) 
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where C 1 is the remaining arbitrary constant and the r n are given by 

1 1 + ~] Wn+J-l'n+J (24) 
rn-  Wn+l,n i=1  j = l  Wn+j+l,n+j 

The constant C 1 is fixed by the normalization condition 

N 

Y~ Rn= 1 (25) 
n = l  

The expressions of the a n can be obtained easily because they satisfy the 
same equations as the R.. Therefore the a n are proportional to the Rn: 

a n = A R  n (26) 

where A is a priori an unknown constant. This constant A can be fixed by 
summing Eq. (19) over n: 

N N 

Z a .= ~ (W.+, ,  n - Wn_,,n)R n (27) 
n = l  n = l  

Therefore the constant A is given by 

N 

A = N (W.+, ,n-  Wn-~.n)Rn (28) 
n = l  

which becomes 

N 1 - ' (29) 
A -  N mrt+ ~n=lrn n = l  1,n 

when one replaces R n by Ctr n. 
Let us now find the T n. To do so it is simpler to introduce the +n 

defined by 

~n ~- mn,n+lTn+l- Wn+l,nTn ( 3 0 )  

The equation (19) becomes an equation for the ~.: 

~n+, - 4n = an + w . . .+1R.+ ,  - W.+LnR.  (31) 

This equation can be solved easily and one finds that the solution is 

N 
A 

+n = W.+ I,.R. + ~ Z iRn+i+ C2 (32) 
i=1  

where C 2 is an arbitrary constant. This constant C z will remain everywhere 
in the calculations but fortunately will disappear in the final expression of 
the diffusion constant. A useful relation to check that (32) solves (31) is that 

N 
A 

Wn+l,nRn - Wn,n+,Rn+, = ~ Z Ri (33) 
i=1  
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This relation is easily verified when one replaces the R~ and A by their 
expressions (23), (24), and (29). 

Now from the knowledge of the ~n, we can find the T n by solving (30): 

- 1  1 
r n -  wn+ln 1 N , - H,=,(w/,,+11w~+1,i) [ ,_1 ,( 

• ~ " + i - - ~ l + " + i H l  w.+j_l,~+j 7 (34) 
�9 = .= W n + j + l , n +  j 

At the end of this section, we have found explicit expressions of the R,, a n, 
and T, as functions of all the hopping rates. We are now going to use these 
expressions to calculate the velocity and the diffusion constant. 

3. VELOCITY AND DIFFUSION C O N S T A N T  

To calculate the velocity V and the diffusion constant D, we shall use 
the following definitions: 

V =  lira d x ( t )  
t-->oo dt (35) 

d D = 1 >im )-~ [ x2(t) -(X---~) 2] (36) 

where x( t )  is the position of the particle at time t and the bar denotes an 
average over the random walk. Notice that in this section we calculate V 
and D as functions of all the hopping rates W~j. Therefore there is no 
average to take with respect to the Wi,j. By definition one has 

d - o o  

x(t) = ~ ,,eo(t) (37) 
I ' I ~ - - o o  

Therefore 

d x ( t )  + ~ dP. 
dt - ~ n 

= _ ~ dt 
m o o  

= ~ n[w.,.+,e.+, + w.n. _,en_l-(W.+~.o+ W.-~,n)P.] 
n ~ - - o o  

+ ~  N 

= E ( w . + , , . -  w . _ , . . ) P . =  y .  ( w o + , , ~ -  w._,.n)~.(t) 
n =  - o o  n ~ l  

Therefore in the long time limit (15), one finds 

N 

v= ~ (wo+,,~- W~_,,~)R~ (38) 
n = l  

One recovers the constant A [see Eq. (28)]. 
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Let us now find the expression of the diffusion constant D. We start 
from 

+oo 

x2(t) = ~,, n2Pn(t) (39) 
R =  - - 0 0  

After a short calculation, one finds 

dx2(t) 
dt 

N N 

- -  --2 E (Wn+l,n- Wn-l'n)Sn(t) Jl- E (Wn+l,n JI- Wn--l,n)l~n(t) 
n ~ l  n = l  

(40) 

N 

x ( t )  = ~ Sn(t) (41) 
n = l  

d x ( t )  N 
dt - E ( W n + l , n -  ~ g n - l , n ) R n ( t )  (42) 

n = l  

If we replace Sn(t) and/~n(t) by their long time behaviors (15) and (16), one 
finds 

D = ~ tliln dt dt 

N N 
1 = ~ (Wn+l,n-- Wn-,.n)(a.t+ 7 . ) +  ~ y. (Wo+,,n + Wn-,,nlR~ 

n = l  n = l  

N N 

- ~] (ant + Tn) ~, (Win+l, m - -  Wm_l,m)R m (43) 
n = l  m = l  

Using Eqs. (26)-(28), one finds that the term linear in time disappears and 
it remains 

N N N 
1 D= Y~ (Wn+,,n- Wo_,,n)Tn+~ Y. (Wn+l,n + W.-,,nllL-A Y~ r., 

n = l  n = l  n = l  

(44/ 
Now we can replace the T n by their expressions (30) and (34): 

N N 

O = -- E ~n "Jr" -~ E ( m n + l , n  "[- m n - , , n ) R n  
n = l  n = l  

N 1 
4- A N W, E Un~n (451 

I - -  H i = ' (  i,i+,/Wi+l,i) n=l  

where the un are defined by 

- IV_I 1 + ~] Ws (46) Un 
, ,  + l,n i = 1 j = ' 1 --j,n - j  
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Replacing again the ~, by their expressions (32) and using the relations 
(23), (24), (25), and (29), one obtains our final expression of the diffusion 
constant: 

D -  1 A u , ~  ir,+i + N ~ W , + l n u ,  r . - A N + 2 
N 2 

( E n =  l?'n) 1 i=1 n= l  

The arbitrary constant C 2 disappears in (47) 
relation: 

N N 

E Un= E rn 
n=l  n = l  

because of 

(47) 

the following 

(48) 

At the end of this section we have found explicit expressions of the velocity 
V and the diffusion constant D as functions of all the W~,j. For the velocity 
V we found 

N 1 - ~ (49) V = A - ---U----  
Y .=l r .  . = 1  , 

where the r. are given by 

1 1+ E II w.+j_,,o+j (50) 
len- Wn+l,n i = l  j = l  Wn+j+l,n+j 

For the diffusion constant the result is given in Eq. (47) and the u, and r, 

are given in Eqs. (46) and (50). So Eqs. (46)-(50) summarize all the results 
obtained up to now. 

4. APPLICATION TO PURE AND RANDOM CASES 

We are now going to calculate the velocity and the diffusion constant 
in three different situations: a pure asymmetric case, a random symmetric 
case, and a random asymmetric case. In the first two cases we shall find 
well-known results. The third case is the most interesting situation. 

4.1. The Pure Asymmetric Case 

We consider the situation where all the IV.+ 1,. are equal and all the 
Wn-1,. are equal: 

W , + l . ,  = W_~ 
(51) 

Wn_l,n~--W(__ 
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Then the r. and the u. are easy to calculate: 

u.= r. + -~--~ 1 -  - ~  / 1 -  - -~  

Therefore the velocity and the diffusion constant are 

V = W~ - W~ (53) 

D = �89 ( W_~ + W~) (54) 

These expressions are of course well known and this case is just a verifica- 
tion. 

4.2. The Random Symmetric Case 

We consider now a situation where the W~.j are different but with the 
property 

w ,j = wj, i (55) 

In this case we have 

N 

1 (56) r . =  E 
i =  1 1,i 

N (57) 
u . -  Wn+ 1,n 

One finds that the velocity V [Eq. (49)] vanishes as it should: 

V = A = 0 (58) 

and the diffusion constant becomes here 

D = N  Wn + 
n = l  l,n 

If the Wn + ~,. are distributed according to a distribution p(W), one sees that 
(59) gives in the thermodynamic limit N--> oo: 

This result is also well known. (1,8) 

4.3. The Random Asymmetric Case 

This is a situation for which less is known but which can also be 
described with the results of Section 3. We consider here the case where the 
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W,.,j are random independent variables except that W,.# and Wj, i may be 
correlated. This means that the two W of the same bond can be correlated 
but are independent of the W on another bond. When one tries to study 
this problem, one has to face two difficulties. 

Firstly, it is not obvious at all that the velocity and the diffusion 
constant of the infinite random system are the same as what one finds by 
taking in expressions (47) and (49) the limit N ~  m. In other words, it 
could be possible that the limits N ~  m and t---)m do not commute, I 
believe that these limits actually commute although I do not know how to 
prove it. 

The second difficulty is that the expressions (47) and (49) are compli- 
cated enough to make impossible the analytic calculation of the average of 
V or D for an arbitrary period N. This difficulty is not a serious one 
because as we shall see it, the problem of calculating V and D becomes 
simpler in the limit N ~ m. All the limits that we shall calculate will exist 
with probability 1. 

We shall restrict ourselves to the case 

' < 0 ( 6 1 )  log W.+ 1,. 

All the results are easy to transpose to the other case. Let us first calculate 
the velocity. Because of (61), one has in the limit N---> ~ :  

N Wn,n + 1 
lira 1 -  I I  w . + l , . -  1 (62) 

N---> ~ n =  1 

This simplifies the expression (49) of the velocity: 

V = lira N r. (63) 
N---~ ~ \ n = l  ] 

Now the denominator of (63) can be simplified by replacing the sum by the 
average of rn: 

N 

lim 1 U-->~ N E In= (rn~ (64) 
n=l 

The average of r. is finite in the limit N---> ~ only if 

W.+ 1,. < 1  (65) 

and one finds that 

(( 1 1 - ' ( 6 6 )  
( r )  = Wn+l,n Wn+l,n 
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Therefore, if condition (65) is satisfied, one finds that the velocity V is 
given by 

g-~ I Wn+l ,n) - l (1-1  Wnn+l 

On the contrary if the condition (65) is not satisfied 

W~+I,. > 1 and logW.+l , .  

then ( r}  = m and the velocity vanishes: 

V = 0 (69) 

One should notice that the calculation of the velocity became simpler in the 
limit N--> oo, whereas averaging V for finite N seems an impossible task. 
The reason of this simplification is that, in the limit N---> oo, quantities like 
(64) do not fluctuate anymore. 

Let us now calculate the diffusion constant. To do so we can rewrite 
(47) using relation (48): 

A 
D =  - - - + N  

2 ( 2 ~ = , r , )  2 

N N 
_jr_ A ~1(i  N-l- 1 )n~= (70) N 2 2 u"r"+i 

( 2 . = , r . )  ;= - '  

In the thermodynamic limit N---) ae, each of the sums which appear in 
(70) has a simple limit. First the constant A is given by (67) [see Eq. (38)]. 
The sums of r~ have also been calculated [see Eqs. (64) and (66)]: 

lira 2 in= 1 1 - , (71) 
N - ~  n=l W.+1,. Wn+ 1,. 

So we have only two sums to calculate in (70). First by looking at the 
expressions the u. and the r. (46), (50), one shows easily that 

lira 1 N 1 1 -  ' (72) 
N--~oo N n=lE Wn,n+lUnrn "-~" Wn+l,n mn+i,n 

The calculation of the remaining sum is a little more complicated. From the 
expressions of the u. and the r n, one can calculate their correlations in the 
limit N ~ m. One finds in this limit that u. is not correlated to the r m with 
m > n but is correlated to the r m with m < n. This means that in the 
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thermodynamic limit, one has 
N 

lim 1 U~>o~ -N E UnFn-j= (u)(r)  + f ( j )  = ( r )  2 + f ( j )  
n=l 

where the function f ( j )  has the following properties: 

f ( j )  v ~ 0 

f ( j ) ~ O  

f ( j )  = 0 

Using (73), one can write 

m _ ~ - ~ . =  i N+12 

if j>~ 0 

when j ~  

if j < 0  

u~r.+i= lim 1 
n = l  N--->o~ "N = - -  

= 1_ ~ f ( j )  
2 j=0 

(73) 

(74) 

e = 

d =  

• f ( j )  = e l + a 1 + 2cd l + a 
j=0 1 - a  1 - b  ( 1 - a ) 2 ( 1 - b )  

where a, b, e, d, and e are defined by 

a =  W.+,,n = ~-- 5 

b = W.+~,.  = ~ 

c =  w.+~.~ = -~-5 

and the result is 

< 1 (76) 

2 
( .+ , ,n )  (w~) 2 

_ C 2  l + a  
(1 - a )  3 ( 7 7 )  

(78) 

(79) 

(80) 

The calculation of this last sum is long but does not present any 
difficulty since the u n and the r n are given and f ( j )  is defined by (73). One 
finds that this sum is finite with probability 1 only if 

N - 1  j~f(j)) 
2 

(75) 
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The notation adopted here is obvious: W~ replaces W.+I, . and W~_ 
replaces W,,. + 1. 

Combining all these results, one finds that if 

W~- t2  1 

The diffusion constant D is given by 
1 - ~ W ~ / W - , )  2 / - 3  

[ 1 ) (  W~- ) 1 1 ) ) ]  (84) 

If condition (83) is not satisfied but one has 

-~-~]  > 1 and < 1 (85) 

Then all the sums which appear in (70) are finite except the last one, which 
diverges [see condition (76)]. Therefore 

D = m (86) 

The last region 

( W~_ 1 W~_ 

is more complicated because, in the expression (70), numerators and 
denominators are both infinite. It is, however, reasonable to expect that the 
diffusion constant is zero (lO in a whole region which contains the point 
(log(W(__/IV_,)) = O. 

It is easy to transpose all the expressions given in this section to the 
case ( log(W(_/W~))  > O. 

4.4. An Example 

In order to illustrate the results of Section 4.3, we are going to study a 
simple example: the pairs (W.,.+ 1, W.+ l,.) can take two values: 

{ W~,.+1 = 1 
with probability a Wn + 1,. = W 

W . , . + 1 = W  
and with probability 1 - a I V .  + 1,. = 1 

(88) 
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where the constant W > 1. The velocity and the diffusion constant are 
drawn on Figs. 1 and 2. 

The critical points al and o~ 2 are given by 

W (89) 
~x~- W + I  

W2 (90) 
~ - W 2 + 1 

The model has an obvious symmetry o~ ~ 1 - ~. One sees that the velocity 
and the diffusion constant are not singular at the same point, Although this 
would require more complicated calculations, it is more than likely that 
higher cumulants of the position x(t) are singular at different points an. 
More precisely the nth cumulant of x(t) is singular at a point an given by 

= 1  (91) 

I 

1 / 2  

1 - 0. 2 1-0.1 

0.1 0.!'.2 1 

Fig. I. 

0. 

The  veloci ty  of the r a n d o m  asymmet r ic  model  def ined  by (88). The  veloci ty  vanishes  

in a whole region 1 - a I < a < a 1. 
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Fig. 2. 

/ \ 
I I I I 

1-0. 2 1 -~  1 1 / 2  Cr.~ c:z. 2 1 

(I 

The diffusion constant of the same model. It diverges at the points ot 2 and 1 - a 2 
which differ from the points aj and 1 - a 1 where the velocity is singular. 

5. THE DISCRETE T IME HOPPING MODEL 

The hopp ing  mode l  is of ten cons idered  in a discrete t ime version.  
Therefore  it is useful  to write the results ob t a ined  above  in that  case. 

On  each site n of the chain,  there is a n u m b e r  Pn (0 < pn < 1). If the 
par t ic le  is at  t ime t on  site n, then, at  t ime t + 1, it  will be ei ther  on site 

n + 1 with p robab i l i t y  Pn or  on site n - 1 with p robab i l i t y  q~ = 1 - p ~ .  The  
Mas t e r  equa t ion  becomes  here 

P n ( t  + 1) = q~+lP~+l( t )  + p ~ _ l P ~ _ l ( t )  (92) 

where P . ( t )  is the p robab i l i t y  that  the par t ic le  is on site n at  t ime t. Here  if 
the la t t ice has  a pe r iod  N, one has  

Pn = 1 - q. =l )n+N = 1 - q .+N (93) 

The  ca lcula t ions  given in Sections 2 a n d  3 can  be r ep roduced  here  wi thout  
any  difficulty.  Therefore  it is sufficient  to give di rect ly  the results. They  are  
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again expressed as functions of the r n and the un: 

1 1 + 2 (94) 
rn = P. i=1 j = l \  Pn+j 

u. = ! 1 + 2 q.+l-_______~j (95) 
ion i=1 j = l \  Pn-j 

The velocity V is given by ~12) 

V = N l - i =  Piqi / n~=lrn (96) 

whereas the diffusion constant D is 
N 

V 2 N + 2  V+ N ~ p~unr~ 
D = 2 2 (~]N= lrn) 2 e / = l  

"q- NV 2 ~= u. ir~+ i (97) 
(• .=lr .)  1 

One should compare the expressions of the velocity (96) and (49) and the 
expressions of the diffusion constant (97) and (47). They are almost 
identical except the term - V2/2 in (97). 

If the p. are randomly distributed according to a distribution p(p.), 
one finds, using the method described in Section 4, that in the thermody- 
namic limit ( N o  ~),  the diffusion constant is finite only if 

q2 

and the expression of D is 

1 (1 - (q/p))2 + (1 - (q/p)2) ( i } 3 
D 

2 ( l / p>  2 (1 - ~ )  \ P 

•  + 1 ( ~ - 2 ) ( 1  - ( q ) )  ] (99) 

Similarly, one finds that the velocity is finite if 

q < ,  (100) 

and its expression is 

q 1 V=(I- (-~))/(~> (I01) 
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Expressions (99) and (101) can easily be transposed to cases where (p /q)  
< 1 or (pZ/q2) < 1. 

6. CONCLUSION 

In this paper we have obtained explicit expressions of the velocity (49), 
(96) and of the diffusion constant (47), (97) of periodic hopping problems 
with an arbitrary period N. We have seen how from these expressions one 
can calculate the velocity (67), (101) or the diffusion constant (84), (99) in 
the random case for an infinite system, at least when the results are finite. I 
think that from these exact expressions one can obtain, at least numerically, 
several interesting informations: for finite N and random hopping rates, it 
would be interesting to know the distributions of V and D and to see how 
these distributions evolve when N increases. Another possible application is 
to study the effect of correlations between the W,,n + 1 of different bonds. In 
particular, it would be interesting to see what happens when the W,, n +1 are 
quasiperiodic functions of n. 

The reason that we could calculate explicitly here V and D is that the 
steady state can be found exactly. This is not the case in higher- 
dimensional models or even in one dimension with hopping rates between 
next nearest neighbors. However, these steady state ideas can be used in all 
these difficult problems if one tries to make weak disorder expansions of 
the velocity, the diffusion constant or the frequency-dependent conductiv- 
ity. The details for lattices in any dimension will be given, I hope, in a 
forthcoming paper although the method has been described for a one- 
dimensional model in a recent work done with R. Orbach. (15) 
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